Abstract

Background—We report the effects of the administration of recombinant fibroblast growth factor-2 (rFGF-2) protein on myocardial perfusion using single photon emission computed tomography imaging in humans with advanced coronary disease.

Methods and Results—A total of 59 patients with coronary disease that was not amenable to mechanical revascularization underwent intracoronary (n=45) or intravenous (n=14) administration of rFGF-2 in ascending doses. Changes in perfusion were evaluated at baseline and again at 29, 57, and 180 days after rFGF-2 administration. In this uncontrolled study, perfusion scans were analyzed by 2 observers who were blinded to patient identity and test sequence; scans were displayed in random order, with scans from nonstudy patients randomly interspersed to enhance blinding. Combining all dose groups, a reduction occurred in the per-segment reversibility score (reflecting the magnitude of inducible ischemia) from 1.7±0.4 at baseline to 1.1±0.6 at day 29 (P<0.001), 1.2±0.7 at day 57 (P<0.001), and 1.1±0.7 at day 180 (P<0.001). The 37 patients with evidence of resting hypoperfusion had evidence of improved resting perfusion: their per-segment rest perfusion score of 1.5±0.5 at baseline decreased to 1.0±0.8 at day 29 (P<0.001), 1.0±0.8 at day 57 (P=0.003), and 1.1±0.9 at day 180 (P=0.11).

Conclusions—These preliminary data suggest that the administration of rFGF-2 to patients with advanced coronary disease resulted in an attenuation of stress-induced ischemia and an improvement in resting myocardial perfusion; these findings are consistent with a favorable effect of therapeutic angiogenesis.

Go to the Article